Skip to main content

sportsdataverse.cfb package

Submodules

sportsdataverse.cfb.cfb_game_rosters module

sportsdataverse.cfb.cfb_game_rosters.espn_cfb_game_rosters(game_id: int, raw=False, return_as_pandas=False, **kwargs)

espn_cfb_game_rosters() - Pull the game by id.

Args:

game_id (int): Unique game_id, can be obtained from espn_cfb_schedule().
return_as_pandas (bool): If True, returns a pandas dataframe. If False, returns a polars dataframe.

Returns:

pl.DataFrame: Polars dataframe of game roster data with columns:
‘athlete_id’, ‘athlete_uid’, ‘athlete_guid’, ‘athlete_type’,
‘first_name’, ‘last_name’, ‘full_name’, ‘athlete_display_name’,
‘short_name’, ‘weight’, ‘display_weight’, ‘height’, ‘display_height’,
‘age’, ‘date_of_birth’, ‘slug’, ‘jersey’, ‘linked’, ‘active’,
‘alternate_ids_sdr’, ‘birth_place_city’, ‘birth_place_state’,
‘birth_place_country’, ‘headshot_href’, ‘headshot_alt’,
‘experience_years’, ‘experience_display_value’,
‘experience_abbreviation’, ‘status_id’, ‘status_name’, ‘status_type’,
‘status_abbreviation’, ‘hand_type’, ‘hand_abbreviation’,
‘hand_display_value’, ‘draft_display_text’, ‘draft_round’, ‘draft_year’,
‘draft_selection’, ‘player_id’, ‘starter’, ‘valid’, ‘did_not_play’,
‘display_name’, ‘ejected’, ‘athlete_href’, ‘position_href’,
‘statistics_href’, ‘team_id’, ‘team_guid’, ‘team_uid’, ‘team_slug’,
‘team_location’, ‘team_name’, ‘team_nickname’, ‘team_abbreviation’,
‘team_display_name’, ‘team_short_display_name’, ‘team_color’,
‘team_alternate_color’, ‘is_active’, ‘is_all_star’,
‘team_alternate_ids_sdr’, ‘logo_href’, ‘logo_dark_href’, ‘game_id’

Example:

cfb_df = sportsdataverse.cfb.espn_cfb_game_rosters(game_id=401256137)

sportsdataverse.cfb.cfb_game_rosters.helper_cfb_athlete_items(teams_rosters, **kwargs)

sportsdataverse.cfb.cfb_game_rosters.helper_cfb_game_items(summary)

sportsdataverse.cfb.cfb_game_rosters.helper_cfb_roster_items(items, summary_url, **kwargs)

sportsdataverse.cfb.cfb_game_rosters.helper_cfb_team_items(items, **kwargs)

sportsdataverse.cfb.cfb_loaders module

sportsdataverse.cfb.cfb_loaders.get_cfb_teams(return_as_pandas=False)

Load college football team ID information and logos

Example:

cfb_df = sportsdataverse.cfb.get_cfb_teams()

Args:

return_as_pandas (bool): If True, returns a pandas dataframe. If False, returns a polars dataframe.

Returns:

pl.DataFrame: Polars dataframe containing teams available.

sportsdataverse.cfb.cfb_loaders.load_cfb_betting_lines(return_as_pandas=False)

Load college football betting lines information

Example:

cfb_df = sportsdataverse.cfb.load_cfb_betting_lines()

Args:

return_as_pandas (bool): If True, returns a pandas dataframe. If False, returns a polars dataframe.

Returns:

pl.DataFrame: Polars dataframe containing betting lines available for the available seasons.

sportsdataverse.cfb.cfb_loaders.load_cfb_pbp(seasons: List[int], return_as_pandas=False)

Load college football play by play data going back to 2003

Example:

cfb_df = sportsdataverse.cfb.load_cfb_pbp(seasons=range(2003,2021))

Args:

seasons (list): Used to define different seasons. 2003 is the earliest available season.
return_as_pandas (bool): If True, returns a pandas dataframe. If False, returns a polars dataframe.

Returns:

pl.DataFrame: Polars dataframe containing the play-by-plays available for the requested seasons.

Raises:

ValueError: If season is less than 2003.

sportsdataverse.cfb.cfb_loaders.load_cfb_rosters(seasons: List[int], return_as_pandas=False)

Load roster data

Example:

cfb_df = sportsdataverse.cfb.load_cfb_rosters(seasons=range(2014,2021))

Args:

seasons (list): Used to define different seasons. 2014 is the earliest available season.
return_as_pandas (bool): If True, returns a pandas dataframe. If False, returns a polars dataframe.

Returns:

pl.DataFrame: Polars dataframe containing rosters available for the requested seasons.

Raises:

ValueError: If season is less than 2014.

sportsdataverse.cfb.cfb_loaders.load_cfb_schedule(seasons: List[int], return_as_pandas=False)

Load college football schedule data

Example:

cfb_df = sportsdataverse.cfb.load_cfb_schedule(seasons=range(2002,2021))

Args:

seasons (list): Used to define different seasons. 2002 is the earliest available season.
return_as_pandas (bool): If True, returns a pandas dataframe. If False, returns a polars dataframe.

Returns:

pl.DataFrame: Polars dataframe containing the schedule for the requested seasons.

Raises:

ValueError: If season is less than 2002.

sportsdataverse.cfb.cfb_loaders.load_cfb_team_info(seasons: List[int], return_as_pandas=False)

Load college football team info

Example:

cfb_df = sportsdataverse.cfb.load_cfb_team_info(seasons=range(2002,2021))

Args:

seasons (list): Used to define different seasons. 2002 is the earliest available season.
return_as_pandas (bool): If True, returns a pandas dataframe. If False, returns a polars dataframe.

Returns:

pl.DataFrame: Polars dataframe containing the team info available for the requested seasons.

Raises:

ValueError: If season is less than 2002.

sportsdataverse.cfb.cfb_pbp module

class sportsdataverse.cfb.cfb_pbp.CFBPlayProcess(gameId=0, raw=False, path_to_json='/', return_keys=None, **kwargs)

Bases: object

__init__(gameId=0, raw=False, path_to_json='/', return_keys=None, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

cfb_pbp_disk()

create_box_score(play_df)

espn_cfb_pbp(**kwargs)

espn_cfb_pbp() - Pull the game by id. Data from API endpoints: college-football/playbyplay, college-football/summary

Args:

game_id (int): Unique game_id, can be obtained from cfb_schedule().
raw (bool): If True, returns the raw json from the API endpoint. If False, returns a
cleaned dictionary of datasets.

Returns:

Dict: Dictionary of game data with keys - “gameId”, “plays”, “boxscore”, “header”, “broadcasts”,

“videos”, “playByPlaySource”, “standings”, “leaders”, “timeouts”, “homeTeamSpread”, “overUnder”,
“pickcenter”, “againstTheSpread”, “odds”, “predictor”, “winprobability”, “espnWP”,
“gameInfo”, “season”

Example:

cfb_df = sportsdataverse.cfb.CFBPlayProcess(gameId=401256137).espn_cfb_pbp()

gameId( = 0)

path_to_json( = '/')

ran_cleaning_pipeline( = False)

ran_pipeline( = False)

raw( = False)

return_keys( = None)

run_cleaning_pipeline()

run_processing_pipeline()

sportsdataverse.cfb.cfb_schedule module

sportsdataverse.cfb.cfb_schedule.espn_cfb_calendar(season=None, groups=None, ondays=None, return_as_pandas=False, **kwargs)

espn_cfb_calendar - look up the men’s college football calendar for a given season

Args:

season (int): Used to define different seasons. 2002 is the earliest available season.
groups (int): Used to define different divisions. 80 is FBS, 81 is FCS.
ondays (boolean): Used to return dates for calendar ondays
return_as_pandas (bool): If True, returns a pandas dataframe. If False, returns a polars dataframe.

Returns:

pl.DataFrame: Polars dataframe containing calendar dates for the requested season.

Raises:

ValueError: If season is less than 2002.

sportsdataverse.cfb.cfb_schedule.espn_cfb_schedule(dates=None, week=None, season_type=None, groups=None, limit=500, return_as_pandas=False, **kwargs)

espn_cfb_schedule - look up the college football schedule for a given season

Args:

dates (int): Used to define different seasons. 2002 is the earliest available season.
week (int): Week of the schedule.
groups (int): Used to define different divisions. 80 is FBS, 81 is FCS.
season_type (int): 2 for regular season, 3 for post-season, 4 for off-season.
limit (int): number of records to return, default: 500.
return_as_pandas (bool): If True, returns a pandas dataframe. If False, returns a polars dataframe.

Returns:

pl.DataFrame: Polars dataframe containing schedule dates for the requested season. Returns None if no games

sportsdataverse.cfb.cfb_schedule.most_recent_cfb_season()

sportsdataverse.cfb.cfb_teams module

sportsdataverse.cfb.cfb_teams.espn_cfb_teams(groups=None, return_as_pandas=False, **kwargs)

espn_cfb_teams - look up the college football teams

Args:

groups (int): Used to define different divisions. 80 is FBS, 81 is FCS.
return_as_pandas (bool): If True, returns a pandas dataframe. If False, returns a polars dataframe.

Returns:

pl.DataFrame: Polars dataframe containing schedule dates for the requested season.
This function caches by default, so if you want to refresh the data, use the command
sportsdataverse.cfb.espn_cfb_teams.clear_cache().

Example:

cfb_df = sportsdataverse.cfb.espn_cfb_teams()

sportsdataverse.cfb.model_vars module

Module contents